Bladder Replacement Therapy

Main Article Content

Xinqi Liu
Jiaxin Wang
Lida Ren
Qing Ling

Keywords

bladder, bladder dysfunction, bladder replacement, artificial bladder, tissue engineering

Abstract

The bladder, as a vital organ of the urinary system, facilitates urine storage and micturition. The bladder can store urine under low pressure, sense volume changes, and coordinate with the urethral sphincter to ensure autonomous and efficient urination and bladder emptying. However, irreversible bladder damage may result from various conditions, such as nerve injuries, aging, or metabolic syndrome, compromising its normal physiological functions and necessitating various interventions for anatomical and functional bladder replacements. This review aimed to summarize advances on anatomical and functional bladder replacements.

Metrics

Metrics Loading ...
Abstract 200 | HTML Downloads 12 PDF Downloads 65

References

1. Boron WF, Boulpaep EL. Medical Physiology E-Book. Elsevier Health Sciences; 2016.
2. Groen J, Pannek J, Castro Diaz D, Del Popolo G, Gross T, Hamid R, et al. Summary of European Association of Urology (EAU) Guidelines on Neuro-Urology. Eur Urol. 2016 Feb;69(2): 324–333. https://doi.org/10.1016/j.eururo.2015.07.071 PMID:26304502
3. Osman NI, Esperto F, Chapple CR. Detrusor Underactivity and the Underactive Bladder: A Systematic Review of Preclinical and Clinical Studies. Eur Urol. 2018 Nov;74(5): 633–43. https://doi.org/10.1016/j.eururo.2018.07.037 PMID:30139634
4. Osman NI, Chapple CR. Contemporary concepts in the aetiopathogenesis of detrusor underactivity. Nat Rev Urol. 2014 Nov;11(11): 639–48. https://doi.org/10.1038/nrurol.2014.286 PMID:25330789
5. Nambiar AK, Arlandis S, Bø K, Cobussen-Boekhorst H, Costantini E, de Heide M, et al. European Association of Urology Guidelines on the Diagnosis and Management of Female Non-neurogenic Lower Urinary Tract Symptoms. Part 1: Diagnostics, Overactive Bladder, Stress Urinary Incontinence, and Mixed Urinary Incontinence. Eur Urol. 2022 Jul;82(1): 49–59. https://doi.org/10.1016/j.eururo.2022.01.045 PMID:35216856
6. Taylor JA, Kuchel GA. Detrusor underactivity: clinical features and pathogenesis of an underdiagnosed geriatric condition. J Am Geriatr Soc. 2006 Dec;54(12): 1920–32. https://doi.org/10.1111/j.1532-5415.2006.00917.x PMID:17198500
7. Gammie A, Kaper M, Dorrepaal C, Kos T, Abrams P. Signs and Symptoms of Detrusor Underactivity: An Analysis of Clinical Presentation and Urodynamic Tests From a Large Group of Patients Undergoing Pressure Flow Studies. Eur Urol. 2016 Feb;69(2): 361–69. https://doi.org/10.1016/j.eururo.2015.08.014 PMID:26318706
8. Osman NI, Chapple CR, Abrams P, Dmochowski R, Haab F, Nitti V, et al. Detrusor underactivity and the underactive bladder: a new clinical entity? A review of current terminology, definitions, epidemiology, aetiology, and diagnosis. Eur Urol. 2014 Feb;65(2): 389–98. https://doi.org/10.1016/j.eururo.2013.10.015 PMID:24184024
9. Drake MJ, Williams J, Bijos DA. Voiding dysfunction due to detrusor underactivity: an overview. Nat Rev Urol. 2014 Aug;11(8): 454–64. https://doi.org/10.1038/nrurol.2014.156 PMID:25002201
10. Uren AD, Cotterill N, Harding C, Hillary C, Chapple C, Klaver M, et al. Qualitative Exploration of the Patient Experience of Underactive Bladder. Eur Urol. 2017 Sep;72(3): 402–7. https://doi.org/10.1016/j.eururo.2017.03.045 PMID:28400168
11. Peyronnet B, Mironska E, Chapple C, Cardozo L, Oelke M, Dmochowski R, et al. A Comprehensive Review of Overactive Bladder Pathophysiology: On the Way to Tailored Treatment. Eur Urol. 2019 Jun;75(6): 988–1000.
https://doi.org/10.1016/j.eururo.2019.02.038 PMID:30922690
12. Raju R, Linder BJ. Evaluation and Treatment of Overactive Bladder in Women. Mayo Clin Proc. 2020 Feb;95(2): 370–7. https://doi.org/10.1016/j.mayocp.2019.11.024 PMID:32029089
13. Antoni S, Ferlay J, Soerjomataram I, Znaor A, Jemal A, Bray F. Bladder Cancer Incidence and Mortality: A Global Overview and Recent Trends. Eur Urol. 2017 Jan;71(1): 96–108. https://doi.org/10.1016/j.eururo.2016.06.010 PMID:27370177
14. Lenis AT, Lec PM, Chamie K, Mshs MD. Bladder Cancer: A Review. JAMA. 2020 Nov;324(19): 1980–91.
https://doi.org/10.1001/jama.2020.17598 PMID:33201207
15. Richters A, Aben KKH, Kiemeney LALM. The global burden of urinary bladder cancer: an update. World J Urol. 2020 Aug;38(8): 1895–1904. https://doi.org/10.1007/s00345-019-02984-4 PMID:31676912
16. Kamat AM, Hahn NM, Efstathiou JA, Lerner SP, Malmström PU, Choi W, et al. Bladder cancer. The Lancet. 2016 Dec;388(10061): 2796–2810. https://doi.org/10.1016/S0140-6736(16)30512-8 PMID:27345655
17. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, et al. Bladder cancer. Nat Rev Dis Primers. 2017 Apr;3(1): 17022. https://doi.org/10.1038/nrdp.2017.22 PMID:28406148
18. Adamowicz J, Pokrywczynska M, Van Breda SV, Kloskowski T, Drewa T. Concise Review: Tissue Engineering of Urinary Bladder; We Still Have a Long Way to Go? Stem Cells Transl Med. 2017 Nov;6(11): 2033–43. https://doi.org/10.1002/sctm.17-0101 PMID:29024555
19. Nurse DE, Britton JP, Mundy AR. Relative indications for orthotopic lower urinary tract reconstruction, continent urinary diversion and conduit urinary diversion. Br J Urol. 1993 May;71(5): 562–5.
https://doi.org/10.1111/j.1464-410X.1993.tb16025.x PMID:8518863
20. Stenzl A, Ninkovic M, Willeit J, Hess M, Feichtinger H, Schwabegger A, et al. Free neurovascular transfer of latissimus dorsi muscle to the bladder. I. Experimental studies. J Urol. 1997 Mar;157(3): 1103–8. https://doi.org/10.1016/S0022-5347(01)65150-4 PMID:9072552
21. Stenzl A, Ninkovic M, Kölle D, Knapp R, Anderl H, Bartsch G. Restoration of voluntary emptying of the bladder by transplantation of innervated free skeletal muscle. Lancet. 1998;351: 1483–1485.
http://doi.org/10.1016/S0140-6736(97)10005-8 PMID: 9605805
22. Forte AJ, Boczar D, Huayllani MT, Moran S, Okanlami OO, Ninkovic M, et al. Latissimus dorsi detrusor myoplasty for bladder acontractility: a systematic review. Arch Plast Surg. 2021 Sep;48(5): 528–33. https://doi.org/10.5999/aps.2021.00402 PMID:34583440
23. Agarwal P, Husain S, Wankhede S, Sharma D. Rectus abdominis detrusor myoplasty (RADM) for acontractile/hypocontractile bladder in spinal cord injury patients: preliminary report. J Plast Reconstr Aesthet Surg. 2018 May;71(5): 736–742. https://doi.org/10.1016/j.bjps.2017.12.015 PMID:29306638
24. Nishi K, Kamiyama T, Wada M, Amae S, Ishii T, Takagi T, et al. Development of an implantable artificial anal sphincter using a shape memory alloy. J Pediatr Surg. 2004 Jan;39(1): 69–72. https://doi.org/10.1016/j.jpedsurg.2003.09.009 PMID:14694374
25. El Feninat F, Laroche G, Fiset M, Mantovani D. Shape Memory Materials for Biomedical Applications. Adv Eng Mater. 2002;4(3):91–104. https://doi.org/10.1002/1527-2648(200203)4:3<91::AID-ADEM91>3.0.CO;2-B
26. Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Materials & Design (1980-2015). 2014;56: 1078–1113. https://doi.org/10.1016/j.matdes.2013.11.084.
27. Kiguchi K, Sakamoto Y, Uozumi J, Nakashima K. A study on implantable urination assist systems - development of a bladder compression system. Conf Proc IEEE Eng Med Biol Soc. 2004;2004: 2774–76.
https://doi.org/10.1109/IEMBS.2004.1403793 PMID:17270852
28. Hassani FA, Peh WY, Gammad GG, Mogan RP, Ng TK, Kuo TL, et al. A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators. Adv Sci(Weinh). 2017 Jul;4(11): 1700143. d
https://doi.org/10.1002/advs.201700143 PMID:29201606
29. Arab Hassani F, Mogan RP, Gammad GG, Wang H, Yen SC, Thakor NV, et al. Toward Self-Control Systems for Neurogenic Underactive Bladder: A Triboelectric Nanogenerator Sensor Integrated with a Bistable Micro-Actuator. ACS Nano. 2018 Apr;12(4): 3487–501. https://doi.org/10.1021/acsnano.8b00303 PMID:29630352
30. Hassani FA, Gammad GG, Mogan RP, Ng TK, Kuo TL, Ng LG, et al. Design and Anchorage Dependence of Shape Memory Alloy Actuators on Enhanced Voiding of a Bladder. Adv Mater Technol. 2018;3(1): 1700184.
https://doi.org/10.1002/admt.201700184.
31. Arab Hassani F, Jin H, Yokota T, Someya T, Thakor NV. Soft sensors for a sensing-actuation system with high bladder voiding efficiency. Sci Adv. 2020 May;6(18): eaba0412. https://doi.org/10.1126/sciadv.aba0412 PMID:32494686
32. Wierzbicka A, Krakos M, Wilczek P, Bociaga D. A comprehensive review on hydrogel materials in urology: Problems, methods, and new opportunities. J Biomed Mater Res B Appl Biomater. 2023 Mar;111(3): 730–756.
https://doi.org/10.1002/jbm.b.35179 PMID:36237176
33. Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, et al. Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B: Rev. 2010 Aug;16(4): 371–83.
https://doi.org/10.1089/ten.teb.2009.0639 PMID:20121414
34. Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat Commun. 2012;3(1): 1270.
https://doi.org/10.1038/ncomms2280 PMID:23232400
35. Yang X, An C, Liu S, Cheng T, Bunpetch V, Liu Y, et al. Soft Artificial Bladder Detrusor. Adv Health Mater. 2018 Mar;7(6): e1701014. https://doi.org/10.1002/adhm.201701014 PMID:29334188
36. Yang Y, Wang J, Wang L, Wu Q, Ling L, Yang Y, et al. Magnetic soft robotic bladder for assisted urination. Sci Adv. 2022 Aug;8(34): eabq1456. https://doi.org/10.1126/sciadv.abq1456 PMID:36001667
37. Stein R, Kamal MM, Rubenwolf P, Ziesel C, Schröder A, Thüroff JW. Bladder augmentation using bowel segments (enterocystoplasty). BJU Int. 2012;110: 1078–1094. http://doi.org/10.1111/j.1464-410X.2012.10973.x PMID: 22954030
38. Cheng PJ, Myers JB. Augmentation cystoplasty in the patient with neurogenic bladder. World J Urol. 2020 Dec;38(12): 3035–46. https://doi.org/10.1007/s00345-019-02919-z PMID:31511969
39. Mundy AR, Stephenson TP. “Clam” Ileocystoplasty for the Treatment of Refractory Urge Incontinence. British Journal of Urology. 1985;57: 641–646. http://doi.org/10.1111/j.1464-410X.1985.tb07023.x PMID: 4084722
40. Biers SM, Venn SN, Greenwell TJ. The past, present and future of augmentation cystoplasty. BJU Int. 2012May;109(9): 1280–93. https://doi.org/10.1111/j.1464-410X.2011.10650.x PMID:22117733
41. Budzyn J, Trinh H, Raffee S, Atiemo H. Bladder Augmentation (Enterocystoplasty): the Current State of a Historic Operation. Curr Urol Rep. 2019;20: 50. http://doi.org/10.1007/s11934-019-0919-z PMID: 31342172
42. Lam Van Ba O, Aharony S, Loutochin O, Corcos J. Bladder tissue engineering: a literature review. Adv Drug Deliv Rev. 2015;82–83: 31–37. http://doi.org/10.1016/j.addr.2014.11.013 PMID: 25446136
43. Szymanski KM, Misseri R, Whittam B, Hollowell N, Hardacker RE, Swenson CR, et al. Additional Surgeries after Bladder Augmentation in Patients with Spina Bifida in the 21st Century. J Urol. 2020;203: 1207–1213.
http://doi.org/10.1097/JU.0000000000000751 PMID: 31951496
44. Bar-Yosef Y, Castellan M, Joshi D, Labbie A, Gosalbez R. Total continence reconstruction using the artificial urinary sphincter and the Malone antegrade continence enema. J Urol. 2011;185: 1444–1447.
http://doi.org/10.1016/j.juro.2010.11.049 PMID: 21334669
45. Vemulakonda VM, Lendvay TS, Shnorhavorian M, Joyner BD, Kaplan H, Mitchell ME, et al. Metastatic adenocarcinoma after augmentation gastrocystoplasty. The Journal of urology. 2008 Mar;179(3): 1094–97.
https://doi.org/10.1016/j.juro.2007.10.089 PMID:18206936
46. Castellan M, Gosalbez R, Bar-Yosef Y, Labbie A. Complications after use of gastric segments for lower urinary tract reconstruction. The Journal of urology. 2012 May;187(5): 1823–27. https://doi.org/10.1016/j.juro.2011.12.105 PMID:22425048
47. Hubert KC, Large T, Leiser J, Judge B, Szymanski K, Whittam B, et al. Long-term renal functional outcomes after primary gastrocystoplasty. J Urol. 2015;193: 2079–2084. http://doi.org/10.1016/j.juro.2014.12.088 PMID: 25562446
48. NEUHOF H. Fascial transplantation into visceral defects: An experimental and clinical study. Surg Gynecol Obstet. 1917;25: 383–427.
49. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 2006 Apr;367(9518): 1241–1246. https://doi.org/10.1016/S0140-6736(06)68438-9 PMID:16631879
50. Cartwright PC, Snow BW. Bladder autoaugmentation: partial detrusor excision to augment the bladder without use of bowel. The Journal of urology. 1989;142: 1050–1053. https://doi.org/10.1016/S0022-5347(17)38985-1 PMID:2795729
51. MacNeily AE, Afshar K, Coleman GU, Johnson HW. Autoaugmentation by detrusor myotomy: its lack of effectiveness in the management of congenital neuropathic bladder. The Journal of urology. 2003 Oct;170(4 Pt 2): 1643–1646. https://doi.org/10.1097/01.ju.0000083800.25112.22 PMID:14501681
52. Sharma S, Basu B. Biomaterials assisted reconstructive urology: The pursuit of an implantable bioengineered neo-urinary bladder. Biomaterials. 2022 Feb;281: 121331. https://doi.org/10.1016/j.biomaterials.2021.121331 PMID:35016066
53. Pane S, Mazzocchi T, Iacovacci V, Ricotti L, Menciassi A. Smart Implantable Artificial Bladder: An Integrated Design for Organ Replacement. Ieee T Bio-med Eng. 2021;68: 2088–2097. http://doi.org/10.1109/TBME.2020.3023052 PMID: 32903176
54. Shafiee A, Atala A. Tissue Engineering: Toward a New Era of Medicine. Annu Rev Med. 2017 Jan 14;68:29-40. http://doi.org/10.1146/annurev-med-102715-092331 PMID: 27732788.
55. Adamowicz J, Kuffel B, Van Breda SV, Pokrwczynska M, Drewa T. Reconstructive urology and tissue engineering: converging developmental paths. J Tissue Eng Regen M. 2019 Mar;13(3): 522–33.
https://doi.org/10.1002/term.2812 PMID:30658008
56. El-Taji OM, Khattak AQ, Hussain SA. Bladder reconstruction: The past, present and future. Oncol Lett. 2015 Jul;10(1): 3–10. https://doi.org/10.3892/ol.2015.3161 PMID:26170968
57. Bertram T. Company Profile: Tengion. Regen Med. 2009 May;4(3): 359–364. https://doi.org/10.2217/rme.09.11 PMID:19438309
58. Drewa T, Adamowicz J, Sharma A. Tissue engineering for the oncologic urinary bladder. Nature Reviews Urology. 2012 Oct;9(10): 561–572. https://doi.org/10.1038/nrurol.2012.158 PMID:22907387
59. Jayo MJ, Jain D, Wagner BJ, Bertram TA. Early cellular and stromal responses in regeneration versus repair of a mammalian bladder using autologous cell and biodegradable scaffold technologies. The Journal of urology. 2008 Jul;180(1): 392–7. https://doi.org/10.1016/j.juro.2008.02.039 PMID:18499157
60. Zhang Y, Frimberger D, Cheng EY, Lin HK, Kropp BP. Challenges in a larger bladder replacement with cell-seeded and unseeded small intestinal submucosa grafts in a subtotal cystectomy model. BJU Int. 2006 Nov;98(5): 1100–05. https://doi.org/10.1111/j.1464-410X.2006.06447.x PMID:17034611
61. Leonhäuser D, Stollenwerk K, Seifarth V, Zraik IM, Vogt M, Srinivasan PK, et al. Two differentially structured collagen scaffolds for potential urinary bladder augmentation: proof of concept study in a Göttingen minipig model. J Transl Med. 2017 Jan;15(1): 3. https://doi.org/10.1186/s12967-016-1112-5 PMID:28049497
62. Brehmer B, Rohrmann D, Rau Gün, Jakse G. Bladder wall replacement by tissue engineering and autologous keratinocytes in minipigs. BJU international. 2006 Apr;97(4): 829–36. https://doi.org/10.1111/j.1464-410X.2006.06005.x PMID:16536783
63. Thein-Han WW, Kitiyanant Y, Misra RD. Chitosan as scaffold matrix for tissue engineering. Materials Science and Technology. 2008;24(9): 1062–1075. https://doi.org/10.1179/174328408X341753
64. Caves JM, Cui W, Wen J, Kumar VA, Haller CA, Chaikof EL. Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials. 2011 Aug;32(23): 5371–79.
https://doi.org/10.1016/j.biomaterials.2011.04.009 PMID:21550111
65. Karahaliloğlu Z, Demirbilek M, Şam M, Sağlam N, Mızrak AK, Denkbaş EB. Surface-modified bacterial nanofibrillar PHB scaffolds for bladder tissue repair. Artif Cells, Nanomed, and Biotechnol. 2016;44(1): 74–82.
https://doi.org/10.3109/21691401.2014.913053 PMID:24863802
66. García-García JM, López L, París R, Núñez-López MT, Quijada-Garrido I, de la Peña Zarzuelo E, et al. Surface modification of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer films for promoting interaction with bladder urothelial cells. Journal of Biomedical Materials Research Part A. 2012 Jan;100(1): 7–17. https://doi.org/10.1002/jbm.a.33215 PMID:21972181
67. Del Gaudio C, Vianello A, Bellezza G, Maulà V, Sidoni A, Zucchi A, et al. Evaluation of electrospun bioresorbable scaffolds for tissue-engineered urinary bladder augmentation. Biomedical Materials. 2013 Aug;8(4): 045013. https://doi.org/10.1088/1748-6041/8/4/045013 PMID:23860081
68. Zhao Y, He Y, Guo JH, Wu JS, Zhou Z, Zhang M, et al. Time-dependent bladder tissue regeneration using bilayer bladder acellular matrix graft-silk fibroin scaffolds in a rat bladder augmentation model. Acta biomaterialia. 2015 Sep;23: 91–102. https://doi.org/10.1016/j.actbio.2015.05.032 PMID:26049152
69. Xiao D, Yan H, Wang Q, Lv X, Zhang M, Zhao Y, et al. Trilayer Three-Dimensional Hydrogel Composite Scaffold Containing Encapsulated Adipose-Derived Stem Cells Promotes Bladder Reconstruction via SDF-1α/CXCR4 Pathway. ACS Appl Mater Interfaces. 2017 Nov;9(44): 38230–38241. https://doi.org/10.1021/acsami.7b10630 PMID:29022693
70. Derakhshan MA, Pourmand G, Ai J, Ghanbari H, Dinarvand R, Naji M, et al. Electrospun PLLA nanofiber scaffolds for bladder smooth muscle reconstruction. International urology and nephrology. 2016 Jul;48(7): 1097–1104. https://doi.org/10.1007/s11255-016-1259-2 PMID:27048629
71. Jack GS, Zhang R, Lee M, Xu Y, Wu BM, Rodríguez LV. Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials. 2009 Jul;30(19): 3259–3270.
https://doi.org/10.1016/j.biomaterials.2009.02.035 PMID:19345408
72. Sivaraman S, Ostendorff R, Fleishman B, Nagatomi J. Tetronic(®)-based composite hydrogel scaffolds seeded with rat bladder smooth muscle cells for urinary bladder tissue engineering applications. J Biomater Sci Polym Ed. 2015;26(3): 196–210. https://doi.org/10.1080/09205063.2014.989482 PMID:25495917
73. Smolar J, Nardo D, Reichmann E, Gobet R, Eberli D, Horst M. Detrusor bioengineering using a cell-enriched compressed collagen hydrogel. J Biomed Mater Res B Appl Biomater. 2020 Oct;108(7): 3045–3055. https://doi.org/10.1002/jbm.b.34633 PMID:32420687
74. Xiao S, Wang P, Zhao J, Ling Z, An Z, Fu Z, et al. Bi-layer silk fibroin skeleton and bladder acellular matrix hydrogel encapsulating adipose-derived stem cells for bladder reconstruction. Biomater Sci. 2021;9: 6169–6182. https://doi.org/10.1039/D1BM00761K PMID:34346416
75. Das AK, White MD, Longhurst PA. Sacral nerve stimulation for the management of voiding dysfunction. Rev Urol. 2000;2(1): 43–60. PMID:16985735
76. Kavvadias T, Huebner M, Brucker SY, Reisenauer C. Management of device-related complications after sacral neuromodulation for lower urinary tract disorders in women: a single center experience. Arch Gynecol Obstet. 2017 Apr;295(4): 951–957. https://doi.org/10.1007/s00404-017-4303-2 PMID:28255769
77. del Valle J, Navarro X. Interfaces with the peripheral nerve for the control of neuroprostheses. Int Rev Neurobiol. 2013;109: 63–83. https://doi.org/10.1016/B978-0-12-420045-6.00002-X PMID:24093606
78. Mickle AD, Won SM, Noh KN, Yoon J, Meacham KW, Xue Y, et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature. 2019 Jan;565(7739): 361–365. https://doi.org/10.1038/s41586-018-0823-6 PMID:30602791
79. Jang T-M, Lee JH, Zhou H, Joo J, Lim BH, Cheng H, et al. Expandable and implantable bioelectronic complex for analyzing and regulating real-time activity of the urinary bladder. Sci Adv. 2020 Nov;6(46): eabc9675. https://doi.org/10.1126/sciadv.abc9675 PMID:33177091
80. Ajalloueian F, Lemon G, Hilborn J, Chronakis IS, Fossum M. Bladder biomechanics and the use of scaffolds for regenerative medicine in the urinary bladder. Nat Rev Urol. 2018 Mar;15(3): 155–174. https://doi.org/10.1038/nrurol.2018.5 PMID:29434369
81. Lloyd SN, Cross W. The Current Use of Biomaterials in Urology. Eur Urol Suppl. 2002;1(10): 2–6.
https://doi.org/10.1016/S1569-9056(02)00146-X.
82. Nieuwenhuijzen JA, de Vries RR, Bex A, van der Poel HG, Meinhardt W, Antonini N, et al. Urinary diversions after cystectomy: the association of clinical factors, complications and functional results of four different diversions. Eur Urol. 2008 Apr;53(4): 834–842; discussion 842-844. https://doi.org/10.1016/j.eururo.2007.09.008 PMID:17904276
83. Lee RK, Abol-Enein H, Artibani W, Bochner B, Dalbagni G, Daneshmand S, et al. Urinary diversion after radical cystectomy for bladder cancer: options, patient selection, and outcomes. BJU Int. 2014 Jan;113(1): 11–23. https://doi.org/10.1111/bju.12121 PMID:24330062
84. Atala A. New methods of bladder augmentation. BJU Int. 2000 May;85(S3 Suppl 3): 24–34; discussion 36.
https://doi.org/10.1111/j.1464-410X.2000.tb16938.x PMID:11954194
85. Parekh DJ, Donat SM. Urinary diversion: options, patient selection, and outcomes. Semin Oncol. 2007 Apr;34(2): 98–109. https://doi.org/10.1053/j.seminoncol.2006.12.010 PMID:17382793
86. Hautmann RE. Urinary diversion: ileal conduit to neobladder. J Urol. 2003 Mar;169(3): 834–842.
https://doi.org/10.1097/01.ju.0000029010.97686.eb PMID:12576795
87. Shekarriz B, Upadhyay J, Demirbilek S, Barthold JS, González R. Surgical complications of bladder augmentation: comparison between various enterocystoplasties in 133 patients. Urology. 2000;55: 123–128.
http://doi.org/10.1016/s0090-4295(99)00443-4 PMID: 10654908
88. Vasdev N, Moon A, Thorpe AC. Metabolic complications of urinary intestinal diversion. Indian J Urol. 2013 Oct;29(4): 310–315. https://doi.org/10.4103/0970-1591.120112 PMID:24235793
89. Pincock S. Anthony Atala: at the cutting edge of regenerative surgery. Lancet. 2011 Oct;378(9800): 1371.
https://doi.org/10.1016/S0140-6736(11)61600-0 PMID:22000126
90. Baumert H, Simon P, Hekmati M, Fromont G, Levy M, Balaton A, et al. Development of a seeded scaffold in the great omentum: feasibility of an in vivo bioreactor for bladder tissue engineering. Eur Urol. 2007 Sep;52(3): 884–890. https://doi.org/10.1016/j.eururo.2006.11.044 PMID:17229515
91. Hoogenkamp HR, Pot MW, Hafmans TG, Tiemessen DM, Sun Y, Oosterwijk E, et al. Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices. Acta Biomater. 2016 Oct;43: 112–121. https://doi.org/10.1016/j.actbio.2016.07.022 PMID:27424084
92. Bouhout S, Chabaud S, Bolduc S. Collagen hollow structure for bladder tissue engineering. Mater Sci Eng C Mater Biol Appl. 2019 Sep;102: 228–237. https://doi.org/10.1016/j.msec.2019.04.052 PMID:31146995
93. Cosentino M, Gaya JM, Breda A, Palou J, Villavicencio H. Alloplastic bladder substitution: are we making progress? Int Urol Nephrol. 2012;44: 1295–1303. http://doi.org/10.1007/s11255-012-0249-2 PMID: 22821051
94. Desgrandchamps F, Griffith DP. The artificial bladder. Eur Urol. 1999;35: 257–266. http://doi.org/10.1159/000019858 PMID: 10087386
95. Roth M, Kirchleitner D, Jocham D, Wassermann H. Artificial urinary bladder-focal technical challenges. World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany: Vol 25/8 Micro-and Nanosystems in Medicine, Active Implants, Biosensors. Springer; 2010. pp. 189–191.
96. Bogash M, Kohler FP, Scott RH, Murphy JJ. Replacement of the urinary bladder by a plastic reservoir with mechanical valves. Surg Forum. 1960;10: 900–903. PMID:13802088
97. Sharma S, Mandhani A, Bose S, Basu B. Dynamically crosslinked polydimethylsiloxane-based polyurethanes with contact-killing antimicrobial properties as implantable alloplasts for urological reconstruction. Acta Biomater. 2021;129: 122–137. http://doi.org/10.1016/j.actbio.2021.04.055
98. Casagrande G, Ibrahimi M, Semproni F, Iacovacci V, Menciassi A. Hydraulic Detrusor for Artificial Bladder Active Voiding. Soft Rob. 2022.http://doi.org/10.1089/soro.2021.0140