Single-cell analyses EMP1 as a marker of the ratio of M1/M2 macrophages is associated with EMT, immune infiltration, and prognosis in bladder cancer

Main Article Content

Jinqiao Li
Jianyu Liu
Honglei Wang
Jinpeng Ma
Yueze Wang
Wanhai Xu

Keywords

bladder cancer, EMP1, EMT, FN1-SDC1, macrophage

Abstract

Background: Bladder cancer is among the most lethal urinary system cancers across the globe. Macrophage 1 and Macrophage 2 play an essential role in the pathogenesis of tumors. Nevertheless, prior studies failed to investigate the implication of the two cells, working in combination, in the development, growth, progression and metastasis of bladder cancer.


Methods: We computed the M1/M2 ratio of the samples retrieved from The Cancer Genome Atlas (TCGA) by using the Cibersortx algorithm and calculated the ratio in 32 patients in our series by employing flow cytometry. SurvivalRandomForest was utilized to reduce the dimension of the list of the M1/M2-related genes, with an aim to obtain the most survival-predictive gene (EMP1) encoding epithelial membrane protein 1 (EMP1). The EMP1 was biologically characterized by using Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and Gene Ontology (GO). The single-cell transcriptome (sc-RNA) analysis was then applied to further look into the function of EMP1. Finally, Cellchat was employed to examine the interaction between macrophages and epithelium cells.


Results: The results showed that higher M1/M2 ratio was found to be associated with a more favorable prognosis of bladder cancer. EMP1 was identified to be the key gene indicative of M1/M2 ratio and higher EMP1 expression was associated with poor prognosis. Further analyses showed that EMP1 might promote tumor invasion and metastasis via epithelial-mesenchymal transition (EMT) and focal adhesion (FA). Moreover, the expression level of EMP1 could serve as an indicator of immunotherapy efficacy. The scRNA-seq data indicated that EMP1 in cancer cells was strongly associated with tumor proliferation. Finally, the Cellchat results exhibited that EMP1 might promote the interaction between macrophages and cancer cells through the fibronectin 1-syndecan 1 (FN1-SDC1) pathway.


Conclusion: Our study identified EMP1, an M1/M2-related gene, the expression of which may act as a prognostic indicator for the proliferation, metastasis, and response to immunotherapy. EMP1 might be involved in the regulation on M1/M2 ratio. 

Metrics

Metrics Loading ...
Abstract 423 | HTML Downloads 51 PDF Downloads 270 Supplementary Figure Downloads 0 Supplementary Table Downloads 0

References

1. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics. CA Cancer J Clin. 2022;72(1):7-33. Epub. 2022;20220112: https://doi.org/10.3322/caac.21708.
2. Global Burden of Disease Cancer C, Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022;8(3):420-44. https://doi.org/10.1001/jamaoncol.2021.698 PMID: 34967848.
3. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B. 2020;10(11):2156-70. Epub 20200419. https://doi.org/10.1016/j.apsb.2020.04.004 PMID: 33304783.
4. De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457-74. Epub 20170714. https://doi.org/10.1038/nrc.2017.51 PMID: 28706266.
5. Mohapatra S, Pioppini C, Ozpolat B, Calin GA. Non-coding RNAs regulation of macrophage polarization in cancer. Mol Cancer. 2021;20(1):24. Epub 20210201. https://doi.org/10.1186/s12943-021-01313-x PMID: 33522932.
6. Dan H, Liu S, Liu J, Liu D, Yin F, Wei Z, et al. RACK1 promotes cancer progression by increasing the M2/M1 macrophage ratio via the NF-kappaB pathway in oral squamous cell carcinoma. Mol Oncol. 2020;14(4):795-807. Epub 20200220. https://doi.org/10.1002/1878-0261.12644 PMID: 31997535.
7. Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer. 2017;1868(1):199-211. Epub 20170410. https://doi.org/10.1016/j.bbcan.2017.04.004 PMID: 28408326.
8. Ahmat Amin MKB, Shimizu A, Zankov DP, Sato A, Kurita S, Ito M, et al. Epithelial membrane protein 1 promotes tumor metastasis by enhancing cell migration via copine-III and Rac1. Oncogene. 2018;37(40):5416-34. Epub 20180604. https://doi.org/10.1038/s41388-018-0286-0 PMID: 29867202.
9. Wang M, Liu T, Hu X, Yin A, Liu J, Wang X. EMP1 promotes the malignant progression of osteosarcoma through the IRX2/MMP9 axis. Panminerva Med. 2020 Sep;62(3):150–4.
10. Liu Y, Ding Y, Nie Y, Yang M. EMP1 Promotes the Proliferation and Invasion of Ovarian Cancer Cells Through Activating the MAPK Pathway. Onco Targets Ther. 2020;13:2047-55. Epub 20200309. https://doi.org/10.2147/OTT.S240028 PMID: 32210572.
11. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50. Epub 20050930. https://doi.org/10.1073/pnas.0506580102 PMID: 16199517.
12. Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T, Boumahdi S, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463-8. Epub 20180418. https://doi.org/10.1038/s41586-018-0040-3 PMID: 29670281.
13. Bakir B, Chiarella AM, Pitarresi JR, Rustgi AK. EMT, MET, Plasticity, and Tumor Metastasis. Trends Cell Biol. 2020;30(10):764-76. Epub 20200813. https://doi.org/10.1016/j.tcb.2020.07.003 PMID: 32800658.
14. Paluch EK, Aspalter IM, Sixt M. Focal Adhesion-Independent Cell Migration. Annu Rev Cell Dev Biol. 2016;32:469-90. Epub 20160804. https://doi.org/10.1146/annurev-cellbio-111315-125341 PMID: 27501447.
15. Sulzmaier FJ, Jean C, Schlaepfer DD. FAK in cancer: mechanistic findings and clinical applications. Nat Rev Cancer. 2014;14(9):598-610. Epub 20140807. https://doi.org/10.1038/nrc3792 PMID: 25098269.
16. Czerniak B, Dinney C, McConkey D. Origins of Bladder Cancer. Annu Rev Pathol. 2016;11:149-74. Epub 20160222. https://doi.org/10.1146/annurev-pathol-012513-104703 PMID: 26907529.
17. Qin Y, Rodin S, Simonson OE, Hollande F. Laminins and cancer stem cells: Partners in crime? Semin Cancer Biol. 2017;45:3-12. Epub 20160801. https://doi.org/10.1016/j.semcancer.2016.07.004 PMID: 27491691.
18. Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206-21. Epub 20170425. https://doi.org/10.1016/j.addr.2017.04.010 PMID: 28449873.
19. Liu C, He D, Zhang S, Chen H, Zhao J, Li X, et al. Homogeneous Polyporus Polysaccharide Inhibit Bladder Cancer by Resetting Tumor-Associated Macrophages Toward M1 Through NF-kappaB/NLRP3 Signaling. Front Immunol. 2022;13:839460. Epub 20220504. https://doi.org/10.3389/fimmu.2022.839460 PMID: 35603205.
20. Martinez VG, Rubio C, Martinez-Fernandez M, Segovia C, Lopez-Calderon F, Garin MI, et al. BMP4 Induces M2 Macrophage Polarization and Favors Tumor Progression in Bladder Cancer. Clin Cancer Res. 2017;23(23):7388-99. Epub 20170919. https://doi.org/10.1158/1078-0432.CCR-17-1004 PMID: 28928159.
21. Kobatake K, Ikeda KI, Nakata Y, Yamasaki N, Ueda T, Kanai A, et al. Kdm6a Deficiency Activates Inflammatory Pathways, Promotes M2 Macrophage Polarization, and Causes Bladder Cancer in Cooperation with p53 Dysfunction. Clin Cancer Res. 2020;26(8):2065-79. Epub 20200211. https://doi.org/10.1158/1078-0432.CCR-19-2230 PMID: 32047002.
22. Gilkes DM, Semenza GL, Wirtz D. Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer. 2014;14(6):430-9. Epub 20140515. https://doi.org/10.1038/nrc3726 PMID: 24827502.
23. Yuzhalin AE, Lim SY, Kutikhin AG, Gordon-Weeks AN. Dynamic matrisome: ECM remodeling factors licensing cancer progression and metastasis. Biochim Biophys Acta Rev Cancer. 2018;1870(2):207-28. Epub 20181012. https://doi.org/10.1016/j.bbcan.2018.09.002 PMID: 30316942.
24. Kumra H, Reinhardt DP. Fibronectin-targeted drug delivery in cancer. Adv Drug Deliv Rev. 2016;97:101-10. Epub 20151127. https://doi.org/10.1016/j.addr.2015.11.014 PMID: 26639577.
25. Wu T, Zhang DL, Wang JM, Jiang JY, Du X, Zeng XY, et al. TRIM29 inhibits miR-873-5P biogenesis via CYTOR to upregulate fibronectin 1 and promotes invasion of papillary thyroid cancer cells. Cell Death Dis. 2020;11(9):813. Epub 20200929. https://doi.org/10.1038/s41419-020-03018-3 PMID: 32994394.
26. Ruiz-Garcia E, Scott V, Machavoine C, Bidart JM, Lacroix L, Delaloge S, et al. Gene expression profiling identifies Fibronectin 1 and CXCL9 as candidate biomarkers for breast cancer screening. Br J Cancer. 2010;102(3):462-8. Epub 20100112. https://doi.org/10.1038/sj.bjc.6605511 PMID: 20068563.
27. Gharbaran R. Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Crit Rev Oncol Hematol. 2015;94(1):1-17. Epub 20141218. https://doi.org/10.1016/j.critrevonc.2014.12.003 PMID: 25563413.
28. Ibrahim SA, Gadalla R, El-Ghonaimy EA, Samir O, Mohamed HT, Hassan H, et al. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol Cancer. 2017;16(1):57. Epub 20170307. https://doi.org/10.1186/s12943-017-0621-z PMID: 28270211.
29. Morikawa M, Derynck R, Miyazono K. TGF-beta and the TGF-beta Family: Context-Dependent Roles in Cell and Tissue Physiology. Cold Spring Harb Perspect Biol. 2016;8(5). Epub 20160502. https://doi.org/10.1101/cshperspect.a021873 PMID: 27141051.
30. Hegde PS, Chen DS. Top 10 Challenges in Cancer Immunotherapy. Immunity. 2020 Jan;52(1):17–35.
31. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399-416. Epub 20170124. https://doi.org/10.1038/nrclinonc.2016.217 PMID: 28117416.
32. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70(5):404-23. Epub 20200807. https://doi.org/10.3322/caac.21631 PMID: 32767764.