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Figure S1. Two reservoirs connected by tube 1 which if opened brings water 

levels in both reservoirs in hydrostatic equilibrium. One end of tube 2 is situated in 

an elastic balloon and the other end is situated in reservoir 2. If tube 1 is closed and 

tube 2 is open, the stress in the wall of the balloon causes a flow out of the balloon via 

tube 2 into reservoir 2.  

 

Figure S1 represents reservoir 1 and 2, both filled with water and connected to each 

other via tube 1 that is closed but can be opened. If there is a difference between the 

water levels in both reservoirs Δh then this causes a hydrostatic pressure difference 

∆ph = Δh = h1 -h2 across this tube. If tube 1 is opened water flows from the reservoir 

with the highest water level to the reservoir with the lower water level till the water 

levels in both reservoirs are equal and Δh(0) = 0. In the initial situation drawn in 

Figure 1A Δh(0) = 0. In reservoir 1 an elastic balloon filled with water is fixed in the 

water. Total volume of the balloon is V that is equal to the sum of rest volume VR and 

elastic volume VE. Rest volume VR is assumed to be constant. Elastic volume VE 

depends on pressure pb in the balloon. The balloon is connected to reservoir 2 via tube 

2 that is closed but can be opened. Pressure inside the balloon pb is measured at a 

fixed point h1’ under water level. Stress in the wall of the balloon contributes a 

pressure pd to pb. In the condition that pd =0 and Δh(0) = 0, pb is calibrated as pb= 0. 

When tube 2 is opened while pd(0) > ∆ph(0) then there is a flow F from reservoir 1 to 



reservoir 2 and ∆ph increases. This flow stops when pd(final) = ∆ph(final). For flow F 

via tube 2 from reservoir 1 to reservoir 2 holds, 

pd = FR + ∆ph              (1A) 

where pd is the flow driving pressure that is built up by stress in the wall of the 

balloon and R is flow resistance of tube 2.  

Cross sectional area of reservoir 1 is A1=125 cm2and cross sectional area of reservoir 

2 is A2=625 cm2. When time t after initial condition Δh(0) = 0 a certain volume Ve (t) 

has streamed from reservoir 1 to reservoir 2, then the water level in the reservoir 1 

decreases with Δh1 and water level in reservoir 2 increases with Δh2 such that Δh1(t) 

A1 = Δh2(t) A2 = Ve(t). The expelled fluid is accompanied by a change in hydrostatic 

pressure difference Δph(t):  

Δph(t) = (1/A1 + 1/A2)Ve(t)              (2A) 

As A2>A1 the decrease of water level h1 is larger than the increase of level h2.  

Because changing column h1’ above the point of measurement contributes to the 

change ∆pb the recorded change in pressure ∆pb is not equal to the change in ∆pd. 

Because ∆h1=∆h’1, 

∆pb(t) = ∆pd(t) - ∆h’1(t)= ∆pd(t) – Ve(t)/A1        (3A) 

The finally expulsed volume Ve(final) is accompanied by final decrease of pd from 

pd(0) till pd(final):  

 

∆ph(final)= (1/A1 + 1/A2)Ve(final)          (4A) 

For ratio Ve(final)/∆pd(final) we write: 

Ve(final)/∆pd(final) = Ve(final)/(pd(0) - pd(final))=  

                                    Ve(final)/[pd(0) – Ve(final) 

(A1+A2)/A1A2]=C           (5A) 

The ratio C of a small change of elastic volume dVE and associated small change in 

pressure dpd of an elastic balloon is the elastic compliance CE: 

CE = dVE/dpd               (6A) 

 

We assume that for the elastic balloon CE is constant, independent of VE. In other 

words for such an elastic balloon CE=C so that VE/pd(0) = CE= C and according to 

(5A) CE can be derived from the observed values of Ve(final) and pd(0).  

 

We express the change in hydrostatic pressure caused by change in h1 and h2 also in a 

compliance parameter Ch defined as:  

Ch = dVe/dph= A1A2/(A1 + A2)=Ve(t) /Δph(t)        (7A) 

In the set up Ch is a constant. With the given values of A1 and A2, Ch = 104 ml/cm 

H2O.   

By combining (7A) with (5A) we get: 

C= CE= Ve(final)/∆pd(final) = Ve(final)/[ pd(0) – Ve(final)/Ch]    (8A) 



When tube 1 is closed then F is equal to rate of decrease of the elastic volume VE(t) so 

that: 

 

F(t) = -dVE(t)/dt             (9A) 

The combination of (6A) with (9A) yields 

 

F(t) = - CE dpd/dt             (10A) 

The combination of (10A) with (1A) yields 

pd(t) = - RCE dpd/dt + ∆ph(t)          (11A) 

Combined with (7A) we can rewrite (10A) as: 

pd(t) = -RCE dpd /dt + Ve (t) /Ch         

or 

dpd /dt = - (Ch pd(t) -Ve(t) )/RCECh         (12A) 

With initial elastic volume of the balloon VE (0) and constant elastic compliance CE 

holds: 

Ve (t) = VE (0) -pd(t)CE            (13A) 

By substitution of (12A) in (13A) we get the following first order differential equation: 
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With initial value pd (0) = VE(0)/CE the solution of differential equation (14A) is 
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where for Cs in the exponent time constant T=RCs holds 

Cs = CECh/(CE + Ch) < CE           (16A)  

            

Cs is an equivalent compliance parameter of the system that determines the rate of 

elastic expulsion and Cs equals the value of CE in series with Ch,. 

According to (15A) pd(t) decays according to a mono-exponential function with time 

constant T= RCs. 

Besides by using (8A) we can use (16A) also to derive the elastic compliance CE from 

the time constant T obtained from the mono-exponential function: 

CE=ChCs/(Ch - Cs)            (17A) 

The hydrostatic pressure ∆ph built up during expulsion has an accelerating effect on 

decay of pd(t) so that Cs < CE. 

 

In the experimental set up pb(t) has been recorded instead of pd(t).   

During an expulsion h’1 decreases similar in time to the increase of Ve(t) = CE pd(0)- 

CE pd(t). If we use (3A) to substitute pb(t) for pd(t) we get,   



pb(t)= (1+CE/A1] pd(t)- CE/A1 pd(0)                 (18A) 

so we find that pb(t) decreases similar to the mono-exponential decay of pd(t), with 

time constant T= RCs. Hence time constant T derived from recording of pb(t) we can 

calculate, by applying (15A), (16A) and (17A) with known values of R and Ch , the 

elastic compliance CE . 

The amplitude pd(0) can be derived from the amplitude of pb(0) by applying: 

Pd(0) = pb(0) + Δph(final) = pb(0) + Ve(final)/Ch       (19A)  

Because: 

Ve(final)= CE [pd(0) - pd(final)]=CE[pb(0) – (pb(final)-∆h1)]= 

                                                                                          

CE[pb(0) – (pb(final)-Ve(final)/A1 )] 

or  

Ve(final) (1+1/A1)= CE(pb(0) – pb(final))       (20A)()  

the total amount of expelled volume Ve(final) expelled by the mono-exponentially 

decaying pressure pd(t) can be derived from the mono-exponentially decaying pb(t).

      

 


